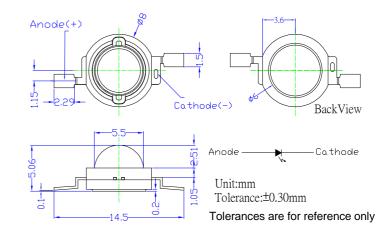


OSY5XNE1E1E VER C.3

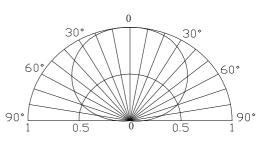
■Features


- Highest Luminous Flux
- Super Energy Efficiency
- Long Lifetime Operation
- Superior UV Resistance

■Applications

- Read lights (car, bus, aircraft)
- Portable (flashlight, bicycle) •
- Bollards / Security / Garden •
- Traffic signaling / Beacons •
- In door / Out door Commercial lights
- Automotive Ext

.


. .

•Outline Dimension

■Absolute Maximum Rating		(Ta=25°C)		
Item	Symbol	Value	Unit	
DC Forward Current	I _F	400	mA	
Pulse Forward Current*	I _{FP}	500	mA	
Reverse Voltage	V _R	5	V	
Power Dissipation	P _D	1200	mW	
Operating Temperature	Topr	-30 ~ +85	°C	
Storage Temperature	Tstg	-40~ +100	°C	
Lead Soldering Temperature	Tsol	260°C/5sec	-	
*Dulas width May 10mg Duty not	1/10			

Directivity

■Forward Operating Current (DC)

RJ-A=60 RJ-A=50 /W /W

RJ-A=40 /W

R 1-4=30 w

*Pulse width Max.10ms Duty ratio max 1/10 . .

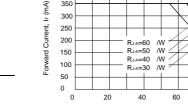
■Electrical	-Optical	Characte	eristics

1 01

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
DC Forward Voltage	$V_{\rm F}$	I _F =350mA	2.0	2.5	3.0	V
DC Reverse Current	I _R	V _R =5V	-	-	10	μΑ
Domi. Wavelength	λ_{D}	I _F =350mA	585	590	595	nm
Luminous Flux	Φv	I _F =350mA	40	50	-	lm
50% Power Angle	201/2	I _F =350mA	-	140	-	deg

*1 Tolerance of measurements of dominant wavelength is ± 1 nm

*2 Tolerance of measurements of luminous flux is $\pm 15\%$


*3 Tolerance of measurements of forward voltage is±0.1V

Note: Don't drive at rated current more than 5s without heat sink for Xeon 1 emitter series.

LED & Application Technologies

(Ta=25°C)

400 350

300 250 200

150

100

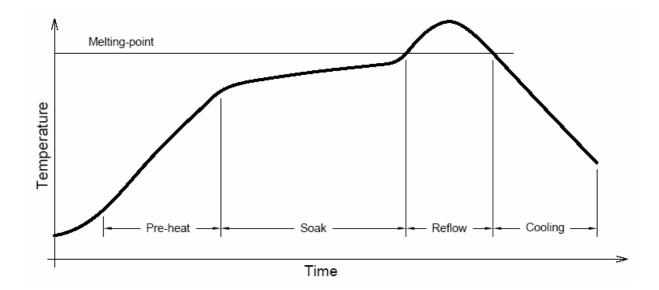
Ambient Temperature, T_A ()

80

100

Xeon 1 Power Yellow LED

OSY5XNE1E1E VER C.3


■ Soldering Heat Reliability :

Reflow soldering Profile

- \cdot Reflow soldering should not be done more than two times.
- \cdot When soldering, do not put stress on the LEDs during heating.
- \cdot After soldering, do not warp the circuit board.
- \cdot Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable,
- a double-head soldering iron should be used. It should be confirmed beforehand whether the

characteristics of the LEDs will or will not be damaged by repairing.

Solder		
Average ramp-up rate = 3°C/sec. max.		
Preheat temperature: 150°~180°C		
Preheat time = 120 sec. max.		
Ramp-down rate = 6° C/sec. max.		
Peak temperature = 220° C max.		
Time within 3°C of actual		
peak temperature = 25 sec. max.		
Duration above 200°C is 40 sec. max.		

LED & Application Technologies

